· Performance  · 1 min read

Reduce LLM API Costs by 80% with Semantic Caching

How SafeLLM's L0 cache layer dramatically reduces your OpenAI/Anthropic bills while improving response times.

How SafeLLM's L0 cache layer dramatically reduces your OpenAI/Anthropic bills while improving response times.

The Hidden Cost of LLM APIs

At $0.03-$0.06 per 1K tokens (GPT-4), costs add up quickly:

  • 100K daily requests × 500 tokens avg = 50M tokens/day
  • Monthly cost: ~$45,000-$90,000

Many of these requests are semantically identical — users asking the same questions in slightly different ways.

How Semantic Cache Works

SafeLLM’s L0 layer intercepts requests before they reach the LLM:

User Request → SHA256 Hash → Redis Lookup

                         Cache HIT? → Return cached response (<0.1ms)

                         Cache MISS → Continue to security layers → LLM

Cache Key Strategy

cache_key = hashlib.sha256(prompt.encode()).hexdigest()

For semantic similarity (Enterprise), we use embedding-based matching.

Real-World Results

MetricBefore SafeLLMAfter SafeLLM
Cache Hit Rate0%80%+
Avg Latency800ms50ms (cache)
Monthly API Cost$50,000$10,000

Configuration

# Enable cache layer
export ENABLE_CACHE=true

# Cache TTL (default: 1 hour)
export CACHE_TTL=3600

# Redis connection
export REDIS_URL=redis://localhost:6379

Enterprise: Redis Sentinel HA

For production deployments:

export REDIS_SENTINEL_ENABLED=true
export REDIS_SENTINEL_HOSTS=sentinel-1:26379,sentinel-2:26379
export REDIS_SENTINEL_MASTER=mymaster

Automatic failover ensures cache availability even during Redis failures.

ROI Calculator

Use our Token ROI Dashboard (Enterprise) to visualize:

  • Requests served from cache vs LLM
  • Cost savings in real-time
  • Cache hit rate trends

Start saving today: GitHub OSS | Enterprise Demo

Back to Blog

Related Posts

View All Posts »