· Performance · 1 min read
Reduce LLM API Costs by 80% with Semantic Caching
How SafeLLM's L0 cache layer dramatically reduces your OpenAI/Anthropic bills while improving response times.

The Hidden Cost of LLM APIs
At $0.03-$0.06 per 1K tokens (GPT-4), costs add up quickly:
- 100K daily requests × 500 tokens avg = 50M tokens/day
- Monthly cost: ~$45,000-$90,000
Many of these requests are semantically identical — users asking the same questions in slightly different ways.
How Semantic Cache Works
SafeLLM’s L0 layer intercepts requests before they reach the LLM:
User Request → SHA256 Hash → Redis Lookup
↓
Cache HIT? → Return cached response (<0.1ms)
↓
Cache MISS → Continue to security layers → LLMCache Key Strategy
cache_key = hashlib.sha256(prompt.encode()).hexdigest()For semantic similarity (Enterprise), we use embedding-based matching.
Real-World Results
| Metric | Before SafeLLM | After SafeLLM |
|---|---|---|
| Cache Hit Rate | 0% | 80%+ |
| Avg Latency | 800ms | 50ms (cache) |
| Monthly API Cost | $50,000 | $10,000 |
Configuration
# Enable cache layer
export ENABLE_CACHE=true
# Cache TTL (default: 1 hour)
export CACHE_TTL=3600
# Redis connection
export REDIS_URL=redis://localhost:6379Enterprise: Redis Sentinel HA
For production deployments:
export REDIS_SENTINEL_ENABLED=true
export REDIS_SENTINEL_HOSTS=sentinel-1:26379,sentinel-2:26379
export REDIS_SENTINEL_MASTER=mymasterAutomatic failover ensures cache availability even during Redis failures.
ROI Calculator
Use our Token ROI Dashboard (Enterprise) to visualize:
- Requests served from cache vs LLM
- Cost savings in real-time
- Cache hit rate trends
Start saving today: GitHub OSS | Enterprise Demo